• 中文
  • ABOUT WNLO
    • Overview
    • History
    • Organization
    • Contact WNLO
  • RESEARCH
    • Research Areas
    • Research Advances
  • FACULTY
  • INTERNATIONAL
    • Overview
    • Forums
    • Conferences
    • Journals
    • International Partners
  • OUTREACH
    • Educational Programs
    • Public Events
    • Tour
  • ABOUT WNLO
    • back
    • Overview
    • History
    • Organization
    • Contact WNLO
  • RESEARCH
    • back
    • Research Areas
    • Research Advances
  • FACULTY
    • back
    • Biomedical Photonics
    • Integrated Photonics
    • Optoelectronics Information Storage
    • Laser Science and Technology
    • Photonics for Energy
    • Life Molecular Network and Spectroscopy
    • Multimodal Molecular Imaging
    • Photon Radiation and Detection
  • INTERNATIONAL
    • back
    • Overview
    • Forums
    • Conferences
    • Journals
    • International Partners
  • OUTREACH
    • back
    • Educational Programs
    • Public Events
    • Tour

News

HOME >> INTERNATIONAL

INTERNATIONAL

  • Overview
  • Forums
  • Conferences
  • Journals
  • International Partners

WOYF 20: Panoptic imaging of intact organs and adult rodent bodies using vDISCO

Time:Apr 18, 2019

Speaker:Dr. Cai Ruiyao, University of Munich, Germany

Invited by:Prof. Luo Haiming

Time:10:30, April 22, 2019
Venue: A101


Abstract:

The effects of most diseases are not confined to a particular body region, therefore a systems biology approach is needed to study diseases at a whole-body level. Tissue clearing methods revolutionized standard histology, allowing the imaging of organs and organisms without sectioning. So far, the highest level of tissue transparency has been achieved by DISCO clearings. It has also been shown that they are compatible with antibody labeling. Nevertheless, owing to the fact that organic solvents can eventually quench the endogenous fluorescent signal, the reliable detection and quantification of the biological fluorescent information in all body districts have still represented a challenge. To overcome this issue, we developed vDISCO", which exploits a nanobody-based whole-body immunolabeling system to enhance the signal of fluorescent proteins, to preserve it permanently and to image through dense and hard tissues such as bones and skin. vDISCO allowed us to image and quantify subcellular details in intact transparent mice. Using vDISCO we visualized the first whole-body neuronal map in adult mice at subcellular resolution. Next, we screened whole mice for changes after CNS trauma and we found degeneration of peripheral nerve terminals in the torso. Moreover, using vDISCO we observed short vascular connections between skull marrow and meninges, which were filled with leucocytes upon stroke. Taken together, our method represents a powerful tool to analyze effects of diseases in whole organisms.


Biography:

Ruiyao Cai was born in Zhejiang, China. At the age of 5 she moved to Milan, Italy with her parents and here she grew up. She obtained her BSc and MSc in Biotechnology at the University of Milan-Bicocca, Italy and during her Master 's thesis she worked in the laboratory of Neurobiology on the role of leptomeningeal cerebral vessels in influencing the stroke outcome. After a period as intern at the University of Oxford and as research fellow in the lab of Neurobiology of the University of Milan-Bicocca, where she continued in the stroke field, she moved to Munich for her PhD studies in Neuroscience under the GSN graduate school. Currently, she is completing her doctoral program in Dr. Ali Ertürk's lab at the Institute for Stroke and Dementia Research, LMU, in Munich. Her research projects focus on the development of new tissue clearing technologies to explore changes triggered by brain injuries such as traumatic brain injury and spinal cord injury. Ruiyao has published over 10 refereed international papers in top journals including first-authored papers in Nature Neuroscience (2018) and Nature Methods (2016).


Prev:WOYF 21: Filter-Driven Four Wave Mixing Laser Micro-combs

Next:WOYF 19: Heterogeneous integration for nonlinear photonics

Grand Vision. Solid Research. Towards Excellency.

WUHAN NATIONAL LABORATORY FOR OPTOELECTRONICS No. 1037 Luoyu Road, Hongshan District, Wuhan, Hubei, China

  • RELATED SITES
  • Ministry of Science and Technology of the People’s Republic of China
  • Ministry of Education of the People’s Republic of China
  • Huazhong University of Science and Technology