1)
Detection of photonic orbital angular momentum with micro- and nano-optical structures
Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN
Front. Optoelectron.. 2019, 12 (1): 88-96.
Abstract
Light with an optical orbital angular momentum (OAM) has attracted an increasing amount of interest and has found its way into many disciplines ranging from optical trapping, edge-enhanced microscopy, high-speed optical communication, and secure quantum teleportation to spin-orbital coupling. In a variety of OAM-involved applications, it is crucial to discern different OAM states with high fidelity. In the current paper, we review the latest research progress on OAM detection with micro- and nano-optical structures that are based on plasmonics, photonic integrated circuits (PICs), and liquid crystal devices. These innovative OAM sorters are promising to ultimately achieve the miniaturization and integration of high-fidelity OAM detectors and inspire numerous applications that harness the intriguing properties of the twisted light.
2)
Two-dimensional material functional devices enabled by direct laser fabrication
Tieshan YANG, Han LIN, Baohua JIA
Front. Optoelectron., 2018, 11 (1): 2-22.
Abstract
During the past decades, atomically thin, two-dimensional (2D) layered materials have attracted tremendous research interest on both fundamental properties and practical applications because of their extraordinary mechanical, thermal, electrical and optical properties, which are distinct from their counterparts in the bulk format. Various fabrication methods, such as soft-lithography, screen-printing, colloidal-templating and chemical/dry etching have been developed to fabricate micro/nanostructures in 2D materials. Direct laser fabrication with the advantages of unique three-dimensional (3D) processing capability, arbitrary-shape designability and high fabrication accuracy up to tens of nanometers, which is far beyond the optical diffraction limit, has been widely studied and applied in the fabrication of various micro/nanostructures of 2D materials for functional devices. This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics, optoelectronics, and electrochemical energy storage devices. The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.
3)
Dipole-fiber system: from single photon source to metadevices
Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.
Front. Optoelectron., 2018, 11 (1): 30-36.
Abstract
Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.
4)
Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity
Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN
Front. Optoelectron., 2018, 11 (3): 245-255.
Abstract
Longitudinal twinning α-In2Se3 nanowires with the twin plane were synthesized to fabricate high performance single nanowire based photodetectors. As-synthesized α-In2Se3 nanowire exhibited typical n-type semiconducting behavior with an electron mobility of 23.1 cm2·V−1·S−1 and a broadband spectral response from 300 to 1100 nm, covering the ultraviolet-visible-near-infrared (UV-visible-NIR) region. Besides, the fabricated device showed a high responsivity of 8.57 × 105 A·W−1, high external quantum efficiency up to 8.8 × 107% and a high detectivity of 1.58 × 1012 Jones under 600 nm light illumination at a basis of 3 V, which are much higher than previously reported In2Se3 nanostructures due to the interface defect effect of the twin plane. The results indicated that the longitudinal twinning α-In2Se3 nanowires have immense potential for further applications in highly performance broadband photodetectors and other optoelectronic devices.
5)
Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates
Ruiqing HU, Yifeng SHI, Haifeng BAO
Front. Optoelectron., 2018, 11 (4): 385-393.
Abstract
A disorderly nanostructured CdSe nano-agglomerates (NAs) with tunable emission are synthesized in aqueous solution. Although the CdSe NAs have diameters of about 20 nm that are larger than the Bohr radius of the crystal bulk, they show size-dependent emission similar to the CdSe nanocrystals. The CdSe NAs represent a collective energy state based on Anderson localization.
6)
BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity
Weina SHI, Xiaowei LV, Yan SHEN
Front. Optoelectron., 2018, 11 (4): 367-374.
Abstract
This work reports on a novel BiOI/WO3 composite photoanode, which was fabricated by depositing BiOI onto a WO3 nanoflake electrode through a electrodeposition method. The photoelectrochemical (PEC) activity of the BiOI/WO3 electrode for water splitting under visible-light irradiation was evaluated. The results show that the BiOI/WO3 photoanode achieved a photocurrent density of 1.21 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE), which was higher than that of the bare WO3 nanoflake electrode (0.67 mA·cm−2). The enhanced PEC acticity of BiOI/WO3 for water splitting can be attributed to the expansion of light absorption range as well as the facilitated separation of photo-generated carriers.
7)
ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells
Xiaoyan HU, Heng WANG
Front. Optoelectron., 2018, 11 (3): 285-290.
Abstract
In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye-sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses by a hydrothermal method, and then ZnO/Nb2O5 core/shell nanorod array was directly obtained via solvothermal reaction in NbCl5 solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images revealed that the ZnO nanorods were uniformly wrapped by Nb2O5 shell layers with a thickness of 30–40 nm. Photovoltaic characterization showed that the device based on ZnO/Nb2O5 core/shell nanorod photoanode exhibited an improved efficiency of 1.995%, which was much higher than the efficiency of 0.856% for the DSSC based on bare ZnO nanorod photoanode. This proved that the photovoltaic performance of ZnO nanorods could be improved by wrapping with Nb2O5 shells.