Increasing global warming and extreme weather are common challenges for humankind, directly affecting individual health and even posing serious threats to lives. Thermal comfort, heating ventilation and air conditioning systems requiring energy supply are widely used in space cooling, resulting in excessive consumption of fossil fuels and significant greenhouse gas emissions such as CO2. Massive greenhouse gas emissions have induced the rise of global temperature and climatic anomalies, significantly threatening the existence of life on the Earth. Hence, new cooling strategy is urgently needed to save energy and reduce emission to protect our living environment and achieve carbon neutrality visions. However, some renewable energy sources are limited by complex systems, geographical, environmental and stability issues. Therefore, in response to global warming and global carbon neutrality, there is an immediate need for new cooling technologies in sustainable carbon-neutral models to confront the issue of superheating as an effective strategy against the energy challenge.
Credit: ©Science China Press
Increasing global warming and extreme weather are common challenges for humankind, directly affecting individual health and even posing serious threats to lives. Thermal comfort, heating ventilation and air conditioning systems requiring energy supply are widely used in space cooling, resulting in excessive consumption of fossil fuels and significant greenhouse gas emissions such as CO2. Massive greenhouse gas emissions have induced the rise of global temperature and climatic anomalies, significantly threatening the existence of life on the Earth. Hence, new cooling strategy is urgently needed to save energy and reduce emission to protect our living environment and achieve carbon neutrality visions. However, some renewable energy sources are limited by complex systems, geographical, environmental and stability issues. Therefore, in response to global warming and global carbon neutrality, there is an immediate need for new cooling technologies in sustainable carbon-neutral models to confront the issue of superheating as an effective strategy against the energy challenge.
To cope with these challenges, recently, the research team led by Prof. Guangming Tao (Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology) and Prof. Cheng-Wei Qiu (Department of Electrical and Computer Engineering, National University of Singapore) has proposed a potential radiative cooling paradigm based on structural and material design, and new opportunities for sustainable carbon neutrality as a zero-energy, ecologically friendly cooling strategy have also been presented. This technology uses broad-spectrum selective and precise regulation to meet the cooling needs of multiple scenes through targeted optimization of optical structures, ultimately achieving sustainable passive radiative cooling. Shortly after published, this article had already been cited in Wikipedia under the terms “Carbon neutrality” and “Passive daytime radiative cooling”.
In order to achieve effective cooling, traditional indoor cooling methods consume large amounts of energy. Therefore, based on mid-infrared high-transmission radiation cooling, Chen, Cui and Lenert et al. designed wearable cooling devices to achieve passive and efficient indoor cooling by reflecting visible light as well as emitting heat radiation through the human body to the surrounding environment (Figure 1). However, passive cooling for hot outdoor environments is still a pressing issue.
In outdoor environments, strong solar radiation is another important factor that causes the temperature of object to rise in addition to thermal radiation. Therefore, Fan and Zhu et al. achieved passive cooling function by designing radiative cooling devices to precisely modulate solar radiation and mid-infrared radiation (Figure 2 c-e), but it is difficult to achieve low cost and mass fabrication. Yang, Zhu, and Tao et al. introduced randomly distributed micro and nanoscale scatterers for sustainable and efficient outdoor passive cooling when fabricated on a large scale (Figure 2 f-m). Scientists have developed thin film, coating, cooling wood, metafabric and other devices to achieve energy savings of 7% – 45% using stable and sustainable passive cooling recipes.
It has been established that peak CO2 emissions and subsequent carbon neutrality are predominant global challenges for future societal development. This review further discussed the future application scenarios of radiative cooling in the context of sustainable carbon neutrality strategies for passive and efficient space cooling needs and presents the development trends, technical challenges, and potential solutions for radiative cooling in the context of current research. The technology promises to be applied in all aspects of everyday life and extreme environments, which is a highly effective strategy for slowing global warming and reshaping the global energy landscape.
See the article:
Radiative cooling for passive thermal management towards sustainable carbon neutrality
https://doi.org/10.1093/nsr/nwac208