• 中文
  • ABOUT WNLO
    • Overview
    • History
    • Organization
    • Contact WNLO
  • RESEARCH
    • Research Areas
    • Research Advances
  • FACULTY
  • INTERNATIONAL
    • Overview
    • Forums
    • Conferences
    • Journals
    • International Partners
  • OUTREACH
    • Educational Programs
    • Public Events
    • Tour
  • ABOUT WNLO
    • back
    • Overview
    • History
    • Organization
    • Contact WNLO
  • RESEARCH
    • back
    • Research Areas
    • Research Advances
  • FACULTY
    • back
    • Biomedical Photonics
    • Integrated Photonics
    • Optoelectronics Information Storage
    • Laser Science and Technology
    • Photonics for Energy
    • Life Molecular Network and Spectroscopy
    • Multimodal Molecular Imaging
    • Photon Radiation and Detection
  • INTERNATIONAL
    • back
    • Overview
    • Forums
    • Conferences
    • Journals
    • International Partners
  • OUTREACH
    • back
    • Educational Programs
    • Public Events
    • Tour

News

HOME >> INTERNATIONAL

INTERNATIONAL

  • Overview
  • Forums
  • Conferences
  • Journals
  • International Partners

Wuhan Optoelectronics Forum 166: Exciton Polariton Lattices in Halide Perovskite Semiconductors

Time:Jun 28, 2020

Wuhan Optoelectronics Forum No.166 was successfully held in the form of live stream online meeting in the morning of June 28. Professor Xiong Qihua from Nanyang Technological University delivered an exciting presentation entitled ‘Exciton Polariton Lattices in Halide Perovskite Semiconductors’. Professor Zhang Xinliang, Vice President of Huazhong University of Science and Technology (HUST), chaired the forum, and awarded the forum medal to Professor Xiong Qihua.


Exciton polaritons are part-light, part-matter strongly interacting Bosonic quasiparticles by dressing excitonic resonances with microcavity photons. They have extremely light effective mass and strong nonlinearity, which have shown tremendous potential in quantum fluid of light (i.e., Bose-Einstein condensate of polaritons), ultrafast polaritonic switching and topological polaritonics. Over the past several decades, this field has been largely fuelled by high quality II-VI (e.g., CdTe) or III-V (e.g., GaAs) quantum wells operating at only cryogenic temperatures constrained by the small exciton binding energy. Some organic materials show promising operation at room temperature, nonetheless they usually suffer from large threshold density and weak nonlinearity. In this talk, Professor Xiong introduced their recent progress in realizing exciton polariton condensate and lasing in a few halide perovskite semiconductors. Then he showed that they can further optically manipulate the condensate by introducing 1D artificial polariton lattices with a large forbidden bandgap opening up to 13 meV. This work further opens a diverse possibility of 2D polariton lattices and network towards quantum simulator and topological lasing. Finally, he showed some perspective work in 2D lattices, new type of band structures and polaritonic devices.


Prev:Wuhan Optoelectronics Forum 168: Domain-Specific AI: Practices and Applications

Next:Wuhan Optoelectronics Forum 165:How do we do scientific research?—Inspiration from the interaction between femtosecond laser and matter

Grand Vision. Solid Research. Towards Excellency.

WUHAN NATIONAL LABORATORY FOR OPTOELECTRONICS No. 1037 Luoyu Road, Hongshan District, Wuhan, Hubei, China

  • RELATED SITES
  • Ministry of Science and Technology of the People’s Republic of China
  • Ministry of Education of the People’s Republic of China
  • Huazhong University of Science and Technology